CHAPTER

Heat Transfer from |
Extended Surfaces (FINS)

6.1 Introduction
In this chapter, we shall discuss heat transfer from extended surfaces, also called Fins.
Fins are generally used to enhance the heat transfer from a given surface.
Consider a surface losing heat to the surroundings by convection. Then, the heat transfer rate (, is given by
Newton's Law of Cooling:
Q = hAs(Ts - Tn)t
where, 1 = heat transfer coefficient between the surface and the ambient
A, = exposed area of the surface
T. = temperature of the surface, and
T, = temperature of the surroundings.

Now, if we need to increase the heat transfer rate from the sutface, we car:
(i) increase the temperature potential, (T, — T,); but, this may not be possible always since both these
temperatures may not be in our control
{ii) increase the heat transfer coefficient k; this also may not be always possible or it may need installing an
external fan or pump to increase the fluid velocity and this may involve cost consideration, or
(iii) increase the surface area A,; in fact, this is the solution generally adopted. Surface area is increased by
adding an ‘extended surface’ {or, fin}) to the ‘base surface’ by extruding, welding or by simply fixing it
mechanically.
Addition of fins can increase the heat transfer from the surface by several folds, e.g. an automobile radiator
has thin sheets fixed over the tubes to increase the area several folds and thus increase the rate of heat transfer.
Generally, fins are fixed on that side of the surface where the heat transfer coefficient is low. Heat transfer
coefficients are lower for gases as compared to liquids (see Table 1.1). Therefore, one can observe that fins are
fixed on the outside the tubes in a car radiator, where cooling liquid flows inside the tubes and air flows on the
outside across the fins.
Likewise, in the condenser of a household refrigerator, freon flows inside the tubes and the fins are fixed on
the outside of these tubes to enhance the heat transfer rate.
Typical application areas of fins are:
(i) Radiators for automobiles
(ii) Air-cooling of cylinder heads of internal combustion engines (e.g. scooters, motor cycles, aircraft
engines}), air compressors, etc.
(i) Economizers of steam power plants
(iv] Heat exchangers of a wide variety, used in different industries
(v) Cooling of electric motors, transformers, etc.



{vi) Cooling of electronic equipments, chips, L.C. boards,
etc,

(vii) Fin theory is also used to estimate error in
temperature measurement while using thermometers
or thermocouples.

Types of fins:
There are innumerable types of fins used in practice. Some of
the more common types are shown in Fig. 6.1.

A straight fin or spine is an extended surface added to a
plane wall. Annular fin is attached circumferentially to a
cylinder to increase its surface area. Fins of rectangular,

- circular, triangular, trapezoidal and conical sections are some
0 of the types commonly used.
N’ Fig. 6.1(a}...longitudinal fin of rectangular profile
! Fig. 6.1(b)...cylindrical tube with fins of rectangular
i) profile
Fig. 6.1(c}... Jongitudinal fin of trapezoidal profile
FIGURE 6.1 Difierent types of fins Fig. 6.1(d)....longitudinal fin of triangular profile

] Fig. 6.1(e)....longitudinal fin of parabolic profile
Fig. 6.1(f)....cylindrical pin fin
Fig. 6.1(g)....truncated conical spine
Fig. 6.1(h)....parabolic spine
Fig. 6.1(i)....cylindrical tube with radial fin of rectangular or truncated conical profile.
Cross-sectional areas of annular fins vary with the radius; in contrast, rectangular or cylindrical spines have

constant cross-gectional area. Triangular or parabolic fins are used when one optimizes the fins from the view
point of weight or volume.

Determination of heat transfer in fins requires information about the temperature profile in the fin. We get
the differential equation describing the temperature distribution in the fin by the usual procedure of writing an
energy balance for a differential volume of the fin. We shall start by doing this for a fin of uniform cross section.

6.2 Fins of Uniform Cross Section (Rectangular or Circular)—Governing
Differential Equation

Let us analyse heat transfer in a fin of rectangular cross section. Same analysis will be valid for a fin of circular

cross section also. :

Consider a fin of rectangular cross section attached to the base surface, as shown in Fig. 6.2. Let L be the
length of fin, w, its width and ¢, its thickness. Let P be the perimeter = 2 {w + {}. Let A_ be the area of cross section,
and, T,, the temperature at the base, as shown.

Assumptions:
(i) Steady state conduction, with no heat generation in the fin
(i) Thickness t is small compared to length L and width w, i.e. one-dimensional conduction in the X-
direction only.
(iii) Thermal conductivity, & of the fin material is constant.
{iv) Isotropic (i.e. constant k in all directions) and homogeneous (i.e. constant density} material.
(v) Uniform heat transfer coefficient i, over the entire length of fin.
(vi) No bond resistance in the joint between the fin and the base wall, and
(vii) Negligible radiation effect.

Base temperature, T, is higher than the ambient temperature, T,. Temperature will drop along the fin from
the base to the tip of the fin, as shown in Fig. 6.2(b). Heat transfer will occur by conduction along the length of
the fin and by convection, with a heat transfer coefficient k, from the surface of the fin to the ambient.

Our aim is to derive a differential equation governing the temperature distribution in the fin. Once we get
the temperature field, heat flux at any point can easily be obtained by applying Fourier’s law.
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FIGURE 6.2(a) Rectangular fin of uniform FIGURE 6.2(b) Temperatre profile along
cross section length of fin

Consider an elemental section of thickness dx at a distance x from the base as shown. Let us write an.energy

balance for this element:
Energy going into the element by conduction = (Energy leaving the element by conduction + Energy leaving

the surface of the element by convection)
ie. Qx = Qx+dx + Qconv (a)
where,
(. = heat conducted into the element at x
Q, +4 = heat conducted out of the element at x + dx, and
Qeony = heat convected from the surface of the element to ambient

We have:
dt
=-kA —
QI C dx
d dT
Qx sdx = kAcE(T + ‘d;dx]
‘ dT T
ie, Qe ix =—k-Ac—‘—i—I— —k~Ac—cbc—2'dx
and, Qconv = hAs (T - Tﬂ)
i.e. Quony = - (Pdx) (T-T)

where, A, is the surface area of the element P, its perimeter.
Substituting the terms in Eq. a,

dr dT d’T
kAT = | kA kA —d he(Pdo) (T -T
C dx [ ¢ dx AC dx2 x] + ( X) ( u)
. T
ie, k-Ag ——5-dx —h-(P-dx)(T-T) =0
: dx
ie i e (T-T)=0 (b)
Le. —s -l - 1)=
ax?

N o [P
where = k-Af
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Note that m has units of: (m™) and is a constant, since for a given operating conditions of a fin, generally &
and k are assumed to be constant.
Now, define excess temperature,

6=T-T,
d¢ dT d*¢ d4°T
Therefore, —~ == and, — =-—
dx  dx dxt dxl
since T, is a constant.
Substituting in Eq. b,
e,
5 —m8=0 {6.1)
dx?

Eq. 6.1 is the governing differential equation for the fin of uniform cross section considered.
Eq. 6.1 is a second order, linear, ordinary differential equation. Its general solution is given by calculus
theory, in two equivalent forms:
8(x) = Ci-exp(-m-x) + C,-exp{m-x) ...{6.2a)
where, C; and C, are constants
and,
&(x) = A-cos h(m-x) + B sin h{m x) ...(6.2b)
where A and B are constants, and cos k and sin # are hyperbolic functions, defined in Table 6.1.
Eq. 6.2a or 6.2b describes the temperature distribution in the fin along its length.
To calculate the set of constants C; and C,, or A and B, we need two boundary conditions:
One of the B.C.’s is that the temperature of the fin at its base, ie. at x = 0, is T, and this is considered as
known.
ie. BC (ixatx=0, T=T,

Regarding the second boundary condition, there are several possibilities:

Case (i): Infinitely long fin,

Case (if): Fin insulated at its end (i.e. negligible heat loss from the end of the fin),

Case (iii): Fin losing heat from its end by cocnvection, and

Case (iv): Fin with specified temperature at its end.

It may be remarked here, that while for case (i), it is convenient to choose the solution in the form given by
Eq. 6.2a and for cases (ii) and (iii), choosing the solution in the form given by Eq. 6.2b makes the analysis easy.

Before we proceed further, let us tabulate a few useful relations for hyperbolic functions: (See Table 6.1).

6.2.1 Infinitely Long Fin

This simply means that the fin is very long. Consequence of this assumption is that temperature at the tip of the
fin approaches that of the surrounding ambient as the fin length
approaches infinity. See Fig. 6.3 (a).

M hT To determine the temperature distribution:

T8 A The governing differential equation, as already derived, is given by

(=
Eg. 6.1, i.e.
o\ T T &9,
" Ll omh =0 (6.1)
+ dx?
And, we shall choose for its solution for temperature distribu-
T.=T, tionEq. (6.2a), ie.
#(x) = Cy-exp(-m-x) + C;-exp(m -x) ...(6.2a)
Lo C, and G, are cobtained from the B'C.’s:
B.C. (i) atx=0,T=T,
— e X B.C. (ii): as x — oo, T = T, the ambient temperature.
From B.C. (i)
FIGURE 6.3{a) Infinitely long fin of atx=0,0(x}=T,-T,= 6,
uniform cross section
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TABLE 6.1 Relations for hyperbolic funciions

(a) . cos h(ﬂ) = M_‘L&M
2
(b) sin h(g) = ZXPB -exp(-f)
2
{c) exp(5) + exp(—p) = 2 cos h(f)
{d) exp(f8} — exp(-8) = 2 sin h(f)
{8) exp (B = cos h(f#)} + sin h(B)
{) exp{~fB) = cos h{fh) - sin h(f)
{9) sin h(0) = 0
(h) cos h{0) =1
(i) —g—‘(s'rn h(m-x) = m-cos h{m-x)
)] % cos h(m-x) = m-sin h(m-x)
{k) cos h(-x) = cos h(x)
(N sin A{-x) = ~sin h(x)
{m) cos hi{x + ¥) = cos h(x).cos h(y) + sin h{x)-sin h{y)
(n) cos h{x — y) = cos h(x)-cos h(y) — sin h{x}-sin h(})
(o} sin A{x + ¥} = sin K{x)-cos h(¥Y) + cos h{x)-sin h{))
{p} sin h(x - y) = sin h{x)-cos h(y) — cos h(x)-sin h{y)
From B.C. {ii): ’ /8, A
atx=oco, B(x) =T, - T, =0 1
From B.C. {ii) and Eq. 6.2a: C=0 Temperature profile
From B.C. {i) and Eq. 6.2a: C; = 8, m, < m, < ms
Substituting C; and C; back in egn. 6.2a, we get:
8(x) = G,-exp(-m-x) m,
my
. f(x) m
ie. 90 = exp(—.m.x) 0 3 > X
T(x)-T FIGURE 6.3(b) Dimensionless femperature
ie. ﬁi = exp{-m-x) ..(6.3} profile along length of fin
o 1a

Eq. 6.3 gives the temperature distribution in an infinitely long fin of uniform cross section, along the length.
This is shown graphically in Fig. 6.3b. Note that temperature distribution is exponential.
1t may be observed from the graph that as the parameter m increases, dimensionless temperature ratio falls
steeply. As the fin length tends to infinity, dimensionless temperature ratio approaches zero, as shown in the Fig,
6.3(b)
To détermine the heat transfer rate:
Heat transfer rate from the fin may be determined by either of the two ways:
(a) by the application of Fourier’s law at the base of the fin, i.e. in steady state, the heat transfer from the fin
must be equal to the heat conducted into the fin at its base.
Le. Qan = -k AdTx)/dxl, _o=—-k A dO(x)/dx], _, e}
{b) by integrating the convective heat transfer for the entire surface of the fin, i.e.

L L
Qo = Lh-p.(T— T,)dx = Ioh-P-de Ad)
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Of course, the resulis obtained by both the methods must be the same; but applying method (a) is easier.
By method (a):

Qpin = — k- A, [-5{» T(x)) =-kA, [i B(x)) ..{c)
dx x=0 dx x=0
. _ d —m-x
ie. Qfin=—-kA_ [E (Ho-e ):IXMU )
ie. Qb = — k- Ap- (=) - [90.(e‘m")]r=0
ie. Qin =k-A,-m-8, ..(6.4)
Substituting for m:
h.P
in = kA ’———-9
Qﬁn C kAC o
ie. Qun = - PkA_ 0, = JHPkA_(T,-T,) ..{6.5)

Eq. 6.4 or 6.5 gives the heat transfer rate through the fin.
Let us verify this result from method (b):

By method (b):
L L
Qin = J' h-Pv(T—Ta)dxzj h-P-8dx ()
Q 0
ie. Qi = .r P8, e ™ dx
0
, 1
ie, Qs = ;.h.P.ga
ie. Qun = Ji-Pk-A_8,= Jh-Pk-A_{T,-T,) ..(same as Eq. 6.5)

6.2.2 Fin of Finite Length with Insulated End

End of a fin is generally not insulated; so, here, what we mean is that the heat transfer from the end of the fin is
negligible as compared to the heat transfer from the surface of the fin. Mostly, this is true, since the area of the
end of fin is negligible compared to the exposed surface area of the fin; in fact, this is the most important case. See

Fig. 6.4.
T, h T, A,
/ v A
»>Q t T,
+ Temperature profile
(@Ttdx), ., = O
L T, T
X » X
FIGURE 6.4(a) Fin of finite length, end insuiated FIGURE 6.4(b) Temperature profile for fin

insulated at its end
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To determine the temperature distribution:
The governing differential equation., as already derived, is given by Eq. 6.1, namely,

iPe
— - 8=0 ..(6.1
. (6.1)
And, we shall choose for its solution for temperature distribution, Eq. 6.2b, i.e.
&(x) = A-cos h{m-x) + B-sin h{m-x} ..(6.2b}
Constants A and B are obtained from the B'C.'s:
B.C.(i):
atx=0,8(x)=T,-T,=§,
B.C. (ii):
atx =1L, a1 = ﬁ =0 since the end is insulated.
dx dx
From B.C. (i) and Eq. 6.2b:
A=¢
From B.C. (ii) and Eq. 6.2b:
dx x=L
ie. A-m-sin k(m-L) + B-m-cos h{m-L) =0 (using relations in Table 6.1)
Substituting fo A: &, (m-sin h(m L) + (B-m cos h(m-L} = 0)
ie. B=-g, sin h(m-L)
cos h{m-L})
Substituting, for A and B in Eq. 6.2b
B(x} = 6, cos him-x) g SNHUELY o me)
cos h{m-L)
‘e #x) _ cosh(mL)cos h(m-x) - sin h(m-L)-sin h(m.x)
- a, cos h(m:L)
AL — '
ie. fﬁ = -Cgf’m—x—)) {(6.6)...using relation no. (n) from Table 6.1)
a, cos h(m-L)
Lo Tx)-T, _ tos h{m-(L - x)) : (67)
T, -T, cos h(m-L)

Eq. 6.6 or 6.7 gives the temperature distribution in the fin with negligible heat transfer from its end.

Same relations are obtained if we start with the general solution for temperature distribution as given by Eq.
6.2a; however, algebraic manipulations required are rather lengthy.
Teémperature at the end of the fin:
This is easily determined by putting x = L in Eq. 6.6 or 6.7:

&(L) 1

ie. = 6.6a ... since cos h{() = 1
v d, cos h{m-L) ( @=1
and, =T _ 1 ' ..{6.7a)
T,-T, «cosh{mlL)
T,-T
, T, =—2 & 4T -(6.7b
o LT s h(mLy | C 6.70)

Eq. 6.7b gives the temperature at the end of a fin (i.e. at x = L), when the end of the fin is insulated.
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To determine the heat transfer rate:
Heat transfer rate from the fin may be determined by the application of Fourier’s law at the base of the fin, i.e. in
steady state, the heat transfer from the fin must be equal to the heat conducted into the fin at its base.

ie. Qan =~k A dT(x)/dx |, _y= -k A d&x}/dx|, _,
Therefore,
—m.sin h(m{L — x)) :
in =—K-A.-6-
Qe ’ [ cos h{m.L) o
ie. Qfn =k-A,-m -6, tan h(m-L) ..{6.8}
ie. Qbin = .,/thJc-AE -8,-tan h(m'L) ..(6.9)
Remember: g =(T,-T,).

Eq. 6.8 or 6.9 gives the heat transfer rate from the fin, insulated at its end.

Comparing Eq. 6.8 with that obtained for heat transfer from an infinitely long fin, i.e. Eq. 6.4, we see that a
fin with insulated end becomes equivalent to an infinitely long fin when tan fi(m L) = 1.

Table 6.2 below shows values of tan k(m.L) for values of (m.L) ranging from 0 to 5; same table is also shown
in graphical form on the right, for easy visualisation,

It is observed from the Table 6.2 that when (- L) for the insulated-end fin reaches a value of about 2.8, heat
transfer rate becomes about 99% of that obtained for an infinitely long fin. And, beyond a value of (m-L) more

TABLE 6.2 Values of tan h{X) for
different values of X

0 0

0.2 0.19738

3: - gggggg | X versus tan h{X) and {1/cos h(X)}
0.8 0.66404

i 0.76159 08 177

1.2 0.83365 0.8 ¥

14 0.88535 07 /"

16 0.92167 — tanh(X) 08 :

18 0.94681 ] 05 /

2 096403 ¢

22 097574 cos hX) 0.4 /

2.4 0.98367 03 /

2.6 0.98303 0.2

28 0.99263 01 /

3 0.99505 0
32 0.09668 0051152 253 354 455 55 6
3.4 0.99777 . x

36 0.99851

3.8 0.999 Note: X=m-L

4 0.99933 /W
4.2 0.99955 m= A,

44 0.9997

46 0.9998

48 0.95986

5 0.95991
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than 5, the fin with insulated end can be considered as infinitely long. Therefore, from the heat transfer point of
view, there is no great advantage in having a fin with (m-L) greater than 2.8 or 3.
6.2.3 Fin of Finite Length Losing Heat from its End by Convection

This is a more realistic case, though the relations developed are a little more complicated, as we shall see pres-
ently. See Fig. 6.5.

T, hT, A,
v A
t
—»Q + T,
Temperature profile
L —k(dTldx) - =8,
< » Convection
L T,
%X » X
FIGURE 6.5(a) Fin of finite length, end losing FIGURE 6.5(b) Temperature profile for fin losing
heat by convection heat at its end

Here, heat conducted to the tip of the fin must be equal to the heat convected away from the tip to the
ambient, i.e.

k Ac' [ﬂ:} =h Ac (TL - Ta)
dx
x=L
Le. — k- (d—T-} =h 8
dx
x=L

To determine the temperature distribution:
The governing differential equation., as already derived, is given by Eq. 6.1, ie.

o

o m-@=0 6.1}
And, we shall choose for its solution for temperature distribution, Eq. 6.2b, i.e.

#(x) = A-cos h(m-x) + B-sin h(m-x) -.(6.2b}
Constants A and B are obtained from the B'C.'s:

B.C.()
atx =90, &)=T,-T,=8,
Applying B.C.(i) to Eq. 6.2b:

A=8,
B.C. (ii): atx =1L,
heat conducted to the end = heat convected from the end
ie. kA, (dg(x)] = h-A,_-8(L) where 8(L) = T, - T,
dx J._r
ie. k'(de(x)) +h-BL) =0
dr /.
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ie. k-{A-m-sin h(m-L)y + B-m-cos h(m-1)] + h-[A-cos h(m-L) + B-sin k{(m.L)] = 0
(using relations in Table 6.1}
Substituting for A: ;
A-{(m-k-sin h(m-Ly + h-cos h(m-L)} + B-{(m-k-cos h(m-L) + k.sin h(m-L)}

-4, -(sin h(m-L) + —h—k--cos h(m-L)J
m- .
,since A = 8,

i.e. B = h
cos h(m-L}+ -—-sin h{m-L}
mk

Now, substitute for A and B in the general solution given by Eq. 6.2:

a(x) (sjn h(m-L)+ —ﬁ-k--cos h(m-L)]
=cos h(m-x) - W
b, ~ cosh{mL)+ " sinh(mL)
m.

-sin i (m-x)

a(x) [cos h{m-x)-cos h(m-L)+%-cos h(m-x)-sin h(m-L)J - sin jr(m-x)-sin h(m-L) - r—nh_k -cos h(m-L)-sin A(m-x)

ie. =

f, cos L)+ —"—sin (m-L)
nt-k
8(x) [cos h(m-L).cos h(m-x} - sin i(m-L)sin h(m-x)] + %-[sin h{m-L)-cos h(m-x) — cos h(m-L).sin hi(m-x)]
i.e. =
6, cos h(m-L) + —'—sin hm-L)
-k
8(x) cos h{m-(L - x))+ Lk-sin h{m-(L —x})
ie. = i ((6.10)...using relations (n} and {p} from Table 6.1)

g, cos h(m-L) + ——sin h(m-L)
m-k

Eq. 6.10 gives the temperature distribution in a fin losing heat by convection at its end.

Remember again that:
Ax) = T(x) - T,

and, 8,=T,-T,

Note that when k = 0, i.e. for negligible heat transfur at the tip of the fin, Eq. 6.10 reduces to Eq. 6.6, for a fin
with insulated tip.
To determine the heat transfer rate:
Heat transfer rate from the fin may be determined by the application of Fourier's law at the base of the fin, i.e. in
steady state, the heat transfer from the fin must be equal to the heat conducted into the fin at its base,

ie. Qi = -k A, [T /dx], o = -k A, d&x)/dx], _,
[— m-sin h(m-L) ik-m-ms h(m-L))
"
Le. inn = *k'A[.' 8,

{cos h(m.L)+ i--sin h(m-L)J
m-k

[sin H(m-L) + " cos h(m-L)J
mk

ie. Qin =k-A-m 6, P
{Cos him-L)+ ——-sin h(m-L)}
m-k
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(tar\ ﬁ(m.L) +;:—k]

Le. Qan =k-A-m-8;

I .{6.11}
[1 + —tan h(m-L)J
m.k

Eq. 6.11 gives the heat transfer rate from a fin losing heat by convection at its tip.
Note: Eq. 6.11 is important since it represents the heat transfer rate for a practically important case of a fin
losing heat from its end. However, it is rather complicated to use. So, in practice, even when the fin is losing heat
from its tip, it is easier to use Eq. 6.8 or 6.9 obtained for a fin with insulated tip, but with a corrected length, L.
rather than the actual length, L, to include the effect of convection at the tip. In that case, only io evaluate Q, L is
replaced by a corrected length L., in Eq. 6.8 or 6.9, as follows:

For rectangular fins: L.=L+ % where t is the thickness of fin
For cylindrical (round} fins: L=L+ % where r is the radius of the cylindrical fin.

6.2.4 Finof Finite Length with Specified Temperature at its End
This type of problem occurs very often in practice, e.g. when a structural member is used as a heat shunt between
two heat reservoirs. Then, the problem is to find out the heat transfer through that member.
Let us formulate the problem as follows:
Problem. A thin fin of length L has its two ends attached to two Qoonv
parallel walls, maintained at temperatures T, and T, as shown in nT
Fig. 6.6. The fin loses heat by convection to the ambient air at T, 'a
Assuming one-dimensional conduction, derive an expression for T, 3
temperature distribul.:ion in the fin. Then, deduce an expression for @, D, 4
the heat lost by the fin.
To determine the temperature distribution:
The governing differential equation., as already derived, is given by L
Eq. 6.1, ie.
4% b————— X
F - m2-9= 0 (61)
And, we shall choose for its solution for temperature distribution, T, Temperature profile
Eq. 6.2b ie.
#(x) = A-cos h{m-x) + B-sin h{m x) ..(6.2b} T,
Constants A and B are obtained from the B'C.’s:
BC{ixatx=0Q T=T, ie 8=06
B.C.(if): at x = O T=T, ie. 8=8 » X
From B.C.(i) and Eq. 6.2b: FIGURE 6.6 Fin of finite length, with speci-
A =8 fied temperature at two ends and the
From B.C.(ii) and Eq. 6.2b: temperature profile olong the length

& = A-cos h(m-L) + B-sin h{m- L}

ie. & = @-cos h{m-L) + B-sin k{m-L)

_ B2 - Bycoshiml)

Therefore, B= ———H"—s,m prmg
Substituting for A and B in Eq. 6.2b:

8, —8,-cos h(m-L}

B(x) = 6, cos h(m-x) + Snh(mL)

-sin h(m-x)

_ @sinh(m-L)ycosh{m-x)- 6, cos h(m-L)-sinh(n-x) + &, -sinh(m-x)
N sinh(m-L)

ie. B(x)
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_ Bysink(m(L - x)) + 8 -sin H{m-x)
h sin h(m-L)

Eq. 6.12 gives the temperature distribution along the length of fin, when its two ends are maintained at two speci-
fied temperatures.
To determine the heat transfer rate:
Total heat transfer rate from the fin is determined by integrating the convection heat transfer over the length of the fin;

ie. a(x)

((6.12)...using relation (p} from Table 6.1)

i L
Qf-m=_[ h-(P-dx)- (T(x) - T,) = j h-(P-d)- 6(x)
jil 0

ie. Qpin = thﬂ(x)dx
]
e O = P- J‘L 8, 5in him-(L - x)) + 8, sinhm x) |
N sin h{m-L)
. O = 1 [—e, cos hlm(L - x)) _ 4, cos h(mx):’L
sin h(mlL) m m 0
- __ P -8 e fa L ]
ie. Qg = sin h(mL) [ - (1-cos h(m-L)) + . (cos k(m-L)-1)
i.e Qi = L—I{ﬂ + &)-(cos k(m-L) -1)]
e fin = rsin h(m L) .
But, m= h—P
kA,

Therefore, substituting for ns:

Qﬁn\/m(e‘+al)[ sinh{m'f-)]

sin k{m-L) ~(6.13)
Eq. 6.13 gives the heat transfer rate for a fin with specified temperatures at its both ends.
To find the minimum temperature in the fin:
Differentiate the expression for #(x), i.e. Eq. 6.12 w.rt. x and equate to zero; solving it, we get x_, . the position where
minimum temperature occurs. Then, substitute this value of x_;, back in Eq. 6.12 to get the value of T,,;,. (Remember:
8(x) = T(x) -~ T,).
When both the ends of fin are at the same temperature:
Now, T, =T, (ie. 8, = 8, ), and obviously, the minimum temperature will occur at the centre, ie. at x = L/2.
Then, substituting ¢, = &; and x = L/2 in Eq. 6.12, we get for minimum temperature:

_ Bysinh(m-(L - x)) +&,-sin h(mx)

ie. Qi = k-A (6, + %)_(cosh(m-L)—lJ

. {612
(x) sin h{m:-L) .
&, -sin h[m{LA;J }*91'5inh[m%J
Therefore, Bin =
erefore min sin ii(m-L)
2.8, sin h(%)
} L2y {6.14)
sin h(m-L)
Remember: Oin = Toin — T,
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Let us make two important notes:

Note 1: Pin fin (or, spine} of uniform cross section:

See Fig. 6.7. All the above analysis for a fin of rectangular cross
section shown in Fig. 6.2, is valid for a fin of uniform circular h, T,
cross section too.

Note 2: Fin parameter, m:
It may be observed from all the derivations for fins done so far, < C)

that the parameter m occurs in all the equations. By definition,

me |E L
-

where, h is the heat transfer coefficient between the fin surface
and the ambient, A, is the cross-sectional area of the fin, P is the

perimeter of the fin section and, k is the thermal conductivity of
X

the fin material. Units of m is: m™ .
(a) For rectangular fin of Fig. 6.2:

—>D<—

FIGURE 6.7 Fin of circular (round) cross section

We get:
A =w-t
P=2(w +1)
where, w = width of fin and t = thickness of fin
Therefore,
h-P
m= |—
kA

. ’2-h-(w+ t)
i.e. ms= |—————
k-w-t

Then, for thin fins, i.e. w << ¢, we can write:

m= Zh (for thin fins)
k-t
{b) For round fin (or pin fin) of Fig. 6.7:
In this case,

.2
A = D
4
P=xD
where, D is the diameter of the fin.
Therefore,
me [BP
“VkA
. 4-h .
ie. m= D (for round (or pin) fins)

6.2.5 Summary of Fin Formulae
The foregoing results, derived for fins with different boundary conditions at the tip, are summarized in Table 6.3
for easy reference.
Exemple 6.1. (a) A very long, 25 mm diameter copper rod {(k = 380 W /(mC)), extends horizontally from a plane heated
wall at 150°C. Temperature of surrounding air is 30°C and heat transfer coefficient between the surface of the rod and
the surroundings is 10 W/{m?K).
(i) Determine the rate of heat loss from the rod
(iiy How long the rod should be to be considered as infinite?
(iii) Draw the temperature profile along the length of the rod.
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TABLE 6.3 Temperature distribution and heat transfer rate for fins of uniform cross section
“x) = (Mx) - Ta), m=/{h Pk Ac)}

Case Tip condion (x=1) . | Ternpemture B8,
1 Infinitely long % = exp{—m-x)
Lo e, AL)=0
Insulated at the tip &(x}  cosh(m(L - x}}
A YRV AT AN =~ k-A-m-B.- A
2 (@oldx)ly., =0 6. cos iim L) Chn = k- Ay m-6-tan him-L)
3 Convection from tip ? = GQin = k- Ac-m-8,x
him (L P sinh(mi(L (tan him-L) + A
k‘m had cos h{im (L - x))+m-sm (m-{L - x)) R
~Max = h
dx|, . cos h(m L)+ s him L) (1 + %-tan h(m-L)]

4(a) Prescribed temperatures 8% = Gysin Altm (L — X)) + 8, sin h{m x)

Q= k-Ay m(6, + 8;)x

at the tip, ends sin h(mL)
cos him-L}—1
" x=0-6=6, sin him-L)
x=L—#=8
When temperatures at both 8. sin him-(L — x)) + 6, sin A x)
ab) ©ndsare equal, gt = 2 = XD 8 X =k A-m-(2-6.).
( ) T1 =T2 or, 31 - 62 (X) sin h(mL) ohn c ( 1)
cos him-L)-1
sin h(m-L)
Minimum temperature is given by:
2.6,sin h(m—LJ
6. =— .. 8 2)
i sin h{m-L)
T, =150°C (b) Compare the temperature distribution in the rod if the materials
h =10 WHm’C were: (i) copper (k = 380 W/(mC)), (ii) aluminium (k = 200 W/(mC))
h= 30,C("‘ ) and, {iii) steel (k = 55 W /(mC)). Other data is the same as in part (a).
) 2 Solution. Since it is stated that it is a very long rod, we will take L
k = 380 WH(m C_) as e, S0, relations derived for an infinitely long fin apply.
I See Fig. Example 6.1.
7 N Data:
D=0.025m D:=0025m Li=wm k=380 W/(mC) T,:=150°C
| T,:=30°C  h =10 W/(m*C)
L 300 Heat transfer rate from the rod:

First, let us calculate the parameter nn:

h-P
We have: m = [—— where, P is the perimeter and A, is the

l———> X e

area of cross section.

’ . . N
FIGURE Exnmplcerss.;l sei;;;:f circulor (round) Then, A = ”f m’  (define the area of cross section of the rod)
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ie. A, = 4909 x 107 m? {aren of cross section of the rod)

and, Pi=mpD,m (define the perimeter of the rod)
ie. P=0079 m (perimeter of the rod)
P
Therefore, m: = n: m (define the parameter m.}
ie. m=2052m’ {(parameterm.)
Now, apply Eq. 6.4 for heat transfer from a a very long fin:
Qg = k- A1 -6, (6.4)
ie. Qpy: = kA, m-(T, - T)
Substituting values: Qg = 45931 W (heat loss rate from the fin.}

Length of rod required to consider it as infinitely long:
Read the discussion under section 6.2.2.
An infinitely long fin has no heat transfer from its end since the end temperature tends to the ambient temperature as the
length tends to infinity. Therefore, comparing the expressions for Q for an infinitely long fin and a fin with insulated at
its end, i.e.
Qpn = k-A -6, (for infinitely long fin)
Qi = k-A-m- G- tan kim-L) ' {for a fin with insulated end,)
we see that they are equivalent when tan h(m-L) is equal to 1.
From Table 6.2, it is seen that at (m-L) = 5, tan & (m-L) is almost equal to 1.
Therefore, the rod can be considered as infinitely long, if: m-L>50rL>{(5/m):

5 :
ie. L= — di L
e - m (define L)
ie. L=2437 m {Iength of rod rquired to consider it as infinitely long.)

To draw the temperature profile in the rod:
We need the equation for temperature profile.
Eq. 6.3 gives the temperature profile for a very long fin:

ie. I_g—):,]-;? = exp(-m-x) ...{6.3)
Therefore, Tix) := T, + (T, - T,)-exp(=mx) (equation for temperature profile in the rod)

We use Mathcad to draw the temperature profile. First, define a range variable x, varying from 0 to say, 2.5 m, with
an increment of 0.1 m. Then, choose x—y graph from the graph palette, and fill up the place holders on the x-axis and y-
axis with ¥ and T(x), respectively. Click anywhere outside the graph region, and immediately the graph appears.
(Fig. Ex. 6.1, b)
x:=001 .., 25 (define a range variable x.. starting value = 0,
next value = 0.1 m, and last value = 2.5 m)
Observe from the graph that at x = 0, the temperature is 150°C and at the end of the fin, the temperature is 30°C
which is that of the ambient. This matches with the boundary conditions of the problem.
{b} Compare the temperature distribution if the fin materials are aluminium (k = 200 W/(mC)) and stainless steel
{k = 55 W/{mC})):

For aluminium: kyqy := 200 W/{(m-C) (thermal conductivity of aluminium)
! h- ' .
Therefore, Mgy = i m” (define fin parameter m for aluminium)
. A1’ e
ie tmy = 2.828 m
and corresponding length required to be considered as infinitely long is:
L= -2 ie L=1768m
May
For steel: k,:= 55 W/(m-C} (thermal conductivity of steel)
Therefore, m, = ’kh_j:: m’ (define fin parameter m for steel.)
ie. m, = 5394 m”
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Temperature distribution for infinitely long fin

150
140
130
120 \
110
100
90 \
80 X in metres and
Lt N\ T(x) in deg.C
N
60
50 A
40 —
30 i
20 ~
10
0
002040608 1 12141818 2 222426 28 3
X
FIGURE Exarmple 6.1(b}
and, corressponding length required to be considered as infinitely long is:
L= 2 ie. L=0927m
To draw the temperature profiles for the three materials:
First, define T as a function of x and m:
ie. ‘ Tlx, m)y:= T, + (T, - T,)-exp(m-x) (equation for temperature profile in the rod)
Then, we have: m,, = 2,052 -..parameter in for copper...calculated in part (a)
my, = 2.828 ..parameter m for aluminium
m, = 5.394 -parameter m for steel

We use Mathcad to draw the temperature profiles. First, define a range variable x, varying from 0 to say, 3.0 m,
with an increment of 0.1 m. Then, choose x-y graph from the graph palette, and fill up the place holder on the x-axis
with x; and in the place holder on the y-axis, fill up T(x, n.,), T{x, m a1)s T(x, m,) separated by commas as shown. Click
anywhere outside the graph region, and immediately the graphs appear. (Fig. Ex. 6.1, c)

x:=0,01..,3 {define a range variable x.. starting value = 0, next
value = 0.1 m, and last value = 3.0 m)

It may be observed from the above graph that:

(i higher the thermal conductivity, higher is the steady state temperature attained at a given location.

(ii) to attain the same temperature on the rod, longer length is required for a material of higher thermal
conductivity.

(iii) it is verified that fin can be considered as infinitely long if the lengths are 2.437, 1.768 and 0.927 m for copper,
aluminium and steel, respectively, i.e. the end temperature becomes equal to the ambient temperature at these
lengths.

Example 6.2. To determine the thermal conductivity of a long, solid 2.5 cm diameter rod, one half of the rod was
inserted to a furnace while the other half was projecting into air at 27°C. After steady state had been reached, the
tertperatures at two points 7.6 cm apart were measured and found to be 126°C and 91°C, respectively. The heat transfer
coefficient over the surface of the rod exposed to air was estimated to be 22.7 W/ (m’K). What is the thermal conductivity
of the rod?
Solution. See Fig. Example 6.2,
Data:

D:=0025m h=27W/mK) T,:=27°C

Since it is a very long (or, infinitely long) rod, we can take any point as the origin. But, taking peint A as origin as
shown in the Fig. 6.9 simplifies the solution. Then, we write:
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Temperature distribution for infinitely long fin
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FIGURE Example 6.1(¢}
Furnace
h =227 WHKm'C)
T,=27°C
126°C 91°C k=7 '
A6 &8 @ D=0025m
P ‘ 0076m |
»
Lo
X
FIGURE Example 6.2 Very long fin of circular cross section
x = 0.076 m {distance of point B from origin (i.e. poini A}}
o= 126°C {temperature at the origin (point A))
T(x): = 91°C (temperature at point B.)
Temperature distribution in a long fin is given by Eq. 6.3:
ie. —% = exp(-n-x) | (6.3}
_ m[ T;x) -TTQ ]
Therefore, M= —"2 % 7 ! (define fin parameter m}
X
ie. m=574 m’
But, we have, by definition of m:
h-P .
m= A (Eq. (A) definition of fin parameter m)
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In the present case,

Px=nDm (define P, the perimeter)
ie. P=0079m (perimenter)
.4 'D2 2 -
and, A= — (define area of cross section A}
ie. A, = 4909 x 107 m? (area of cross section A,)
h-I

I
Therefore, from Eq. (A): k: = - W/(mK) define thermal conductivity

A,
ie k= 110237 W/(mK) ...value of thermal conductivity.
Bxomple 4.3, Aluminum square fins (0.5 mm x 0.5 mm} of 1 cm length are provided on the surface of an electronic
semiconductor device to carry 46 mW of energy generated by the electronic device and the temperature at the surface of
the device should not exceed 80°C. The temperature of the surrounding medium is 40°C. Thermal conductivity of alu-
minium =190 W/(mK) and heat transfer coefficient # = 12.5 W/(m?K). Find number of fins required to carry out the
above duty. Neglect the heat loss from the end of the fin. M.UJ
Solution. This is the case of fin, insulated at its end, since by data, there is no heat loss from the end of the fin. Therefore,
Eq. 6.7 for temperature distribution and Eq. 6.8 for heat transfer rate, are applicable.
See Fig. Example 6.3.

T,=80°C
h=125 Wim'C) k = 190 Wi(mK)

T,=40°C
, 3.5 mm sq.

N

e . insulated
L=001m

X

Figure Exomple 6.3 Finite fin insulated at its tip

Date:

Quu=0046W  L=00lm w:=00005m +=0005m k:=190W/mK T,:=80°C

T,:=40°C  h:=125 W/(m?K)

Let us first calculate heat transferred from one fin; then, knowing the total amount of heat to be transferred, we can
find out the total number of fins required.
Fin parameter m:

h-P
We have m= A (fin parameter)
Now, A= w-t,m? {define area of cross section of fin)
ie. A =25x%x107 m? {area of cross section of fin)
and, P=2-(w+# m (define perimeter of fin sectior)
ie. P=2x10"m (perimeter of fin section)
Therefore, m = ‘:—i m™ (define fin parameter m)
ie m=22942 m™ {fin parameter m)
Also, 8:=T,-T,°C (define excess temperature at the base)
ie. 6, = 40°C (B at the base, i at x = ()
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Applying Eq. 6.8 for heat transfer rate from a fin with insulated end:

ie. Qin:=k-A.-m-6,-tan h(m L) ..{6.8)
we get: Qi = 9.82818 x 107 W (heat transfer per fin)
Therefore, number of fins required to carry 46 mW:
N = o 4.68 (f.e. say, 5 fins.)
fin

Exumple 64. A cylinder 5 cm diameter and 50 cm long, is provided with 14 longitudinal straight fins of 1 mm thick and
2.5 mm height. Calculate the heat loss from the cylinder per second if the surface temperature of the cylinder is 200°C.

Take h = 25W/(m? K}, k = 80 W/(mK), and T, = 45°C. M.U.]
Solution. See Fig. Example 6.4.

t=0.001m
L=0.0025m
w=05m f\
T, =200°C

Total 14 no. of fins
k = 80 W/{mK)

D=0.05m

=25 WHm°K)
T,=45C

FIGURE Example 6.4 Longitudinal fins on a cylinder, losing heat from tip

This is the case of a fin with convection from its end. Therefore, Eq. 6.10 for temperature distribution and Eq. 6.11
for heat transfer rate, are applicable. However, Eq. 6.11 is a little complicated to use; so, as remarked earlier, we shall use
the Eq. 6.8 for a fin with insulated end, but with the modification that the corrected length, L is used instead of L. Then,
we will check the result thus obtained, by applying Fq. 6.11.

Total heat transfer is calculated as the sum of heat transferred from all the 14 fins and the convective heat transfer
from the unfinned base surface of the cylinder, which is at a temperature of 200°C.

Data:

L :=0.0025 m w = 05m t:=0001 m N:=14 D=005m k=80 W/(m K) T, = 200°C

T,=45°C h-=25W/mK} 8:=T7,-T,°Cie 6 =155C
Fin parameter m:

We have: "= L
k-
Now, A= wet, {defirte area of cross section of fin)
Le. A, =5% 10" m? (area of cross section of fin)
and, Pi=2"{w+#H m (define perimeter of fin section)
i.e. P=1.002 m (perimeter of fin section)
WP ,
Therefore, m = E m-, (define fin parameter m)
ie m = 25025 m™ {fin parameter n1)

Corrected length, L
For rectangular cross section:
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t
L.i=L+ E m (define corrrected length)

ie. L=3x10"m ) (corrected length.)
Heat transfer from fins:
Applying Eq. 6.8 for heat transfer rate from a fin with insulated end, using L_ instead of L:

ie. Qpin:=k-A.-m-8-tan hi{m-L) ..(6.8}

we get: Qpn = 1162642 W (heat transfer per fin)
Therefore,

heat transfer from 14 fins: Q, ;== Qg 14 W (define heat transfer from 14 fins)

ie. Oront = 16277 W (heat transfer from 14 fins.)

Heat transfer from unfinned surface of cylinder:
Unfinned surface area: A, == {#-D - N- ) w, m’ = subtracting the area occupied by 14 fins
from the surface area of the cylinder

ie Auniin = 0.072 m? ..unfinned area

Therefore, Qup=h-A 5 (T, -TJW -..heat transfer from unfinned base area

ie. oty = 277.217 W - heat transfer from unfinned base area
Tofal heat transfer rate:

Quotal := Qeon + Qg W ...define total heat transfer

i.e. Qrotal = 439.987 W ...total heat transfer.

Verify: Let us check the result obtained by using Eq. 6.8 by comparing it with the result that would be obtained if we
use the accurate relation for heat transfer for fin with convection from its end, i.e. Eq. 6.1%:

{tan him-Ly + vh_J
m-k

Qpai=k-Am g (6.11)

(1 + }—J-ta.n h(m-L))
mk

ie. Qo = 11.62266 W (heat transfer per fin)
This value compares very well with the result obtained from Eq. 6.8, Le. 11.626 W.
Exomple 6.5. Two ends of a copper rod (k = 380 W/(mK)), 15 mm diameter and 300 mm long are connected to two
walls, each maintained at 300°C. Air is blown across the rod with a heat transfer coefficient of 20 W/ (m’K). Air
temperature is 40°C. Determine:
(i) mid-point temperature of the rod
(i) net heat transfer to air
(iii} heat transferred from the first 0.1 m of the rod from LHS. [M.U]
Solution. See Fig. Example 6.5.

D =0.015m, k = 380 W/(mK)

h =20 W/m’C) :
T, = 300°C / T,=40°C - T, = 300°C
/

——— X
FIGURE Example 6.5 Fin with equal temperature at both ends
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This is the case of a fin with specified temperatures at its both ends. S0, we can directly use Eq. 6.12 for temperature
distribution and Eq. 6.13 for heat transfer rate.

However, easier method to solve, is as follows: since the temperatures at both ends are same, it is immediately
clear that the minimum temperature occurs at the mid-point. i.e. at the mid-point, dT/dx is equal to zero; but, this is also
the condition for an insulated end. Therefore, the given rod of length L may be considered as made up of two fins, each
of length L/2, insulated at its end. So, for one half of the rod, we can apply the simpler Eq. 6.7 for temperature
distribution and Eq. 6.8 for heat transfer, for a fin with insulated end.

We will verify the result later, by using Eq.6.12 and 6.13.

Data:
Di=0015m L:=03m k:=380W/(mK) T,:=300°C T,:=300"C
T,:=40°C k= 20W/(m’K)

Fin parameter m:

We have: m= L
kA,
zD* . .
Now, A = I (define area of cross section of fin)
ie. A, = 1.767 x 107 m? (area of cross section of fin)
and, P=rgDm (define perimeter of fin section)
Le. P =0047 m (perimeter of fin section)
P —_
Therefore, m:= A m, (define fin parameter m)
e
i.e. m=3746 m", (fin parameter m.)

Mid-point temperature of rod:
Now, left half of the rod can be considered as a fin of length L/2, with its end insulated.
So, for temperature distribution, apply Eq. 6.7, putting L = L/2, T, =T

T(x)-T, _ cosh(m{L-x) 6
T,—T,  cosh{mlL) 6.

Putting L = L/2:

Tay:=(T|-T) —=r———"= + T, (Eq. A..temperature distribution in the rod)

Therefore, mid-point temperature is obtained by putting x = L/2:
Le. T(0.15) = 263.734°C {mid-point temperature.)
To draw the temperature profile:
We use Mathcad to draw the temperature profile, First, define a range variable x, varying from 0 to (1.3 m, with an
increment of 0.01 m. Then, choose x—y graph from the graph palette, and fill up the place holders on the x-axis and y-axis
with x and T(x), respectively. Click anywhere outside the graph region, and immediately the graph appears. See Fig. Ex.
6.5(b)
x:=0,001, ..,03 (define a range variable x..starting value = 0,
next value = 0.01 m, and last value = 0.3 m)

It may be verified from the graph that temperature at both the ends is 300°C and the minimum. temperature occurs
at mid-point (i.e. x = 0.15 m), with Ty, = 263.73°C.

Also, note that temperature distribution as given in Eq. A plots the temperature distribution over the whole length
since beyond » = L/2 = 0.15 m, in the numerator of first term in Eq. A, the relation cos h{-x) = cos h{x) applies, and
beyond the mid-point, we get a mirror image of the graph on the left.

Heat transfer:

Heat transfer for the first half of the rod is given by Eq. 6.8. Total heat transfer from the rod is, of course, twice this value:

ie. Qpn = kA, m-8,-tan him-L) (68)
Note that in Eq. 6.8, we have to put L = L/2,8,=(T,-T,)
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FIGURE Exomple 6.5(b)

Therefore, total heat transfer from the rod:
O i= 2k A,-m-(T; ~ T,) -tan h (m%] (B

ie. Qo = 66.642 W (heat transfer from the rod)
Verify: Let us verify the results now from Eqs. 6.12 and 6.13.
For temperature profile: use Eq. 6.12:

_ @-sinh(m-(L - X)) + 8,-sin (m-x)

ie. B{x {612
) sin ft(m-L) 612)
Put here: & =6,=1T-T,
fr) = (T, -T.)-sin h(m’(L‘ — )+ (T ~ ) -sin k(m ) (O
sin h{m-L)
. . L
and, at mid-point, X = 3 =015 m
Therefore, 8(0.15) = 223.734°C (excess temperature = T(x) — T{a))
Le. T(0.15) = 223.734 + 40 = 263.734°C  (temperature at mid-point..same as obtained earlier.)
or, directly from Eq. 6.14:
2-6,-sin h(%}
ie. B = —————= (614
e i sin h(m-L) (614)
201, =Ty sin ("5
e Tpin: = T, + 2
min * sin k{m-L)
ie. Toin = 263.734 C (temperature at mid-point

..same as obtained above.)
For heat transfer: use Eq. 6.13:

A ) cosh{m-L)-1
Qn = k-Am-(6 + &) [—_sin prE } .(6.13)
Put here: G=6-=-T-T,=260
. cos h{m-L) -1
ie. Qi = k- A 1m1-(260 + 260) | ——————— (D)
sin k{m-L)
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ie. Qpn = 66642 W (heat transfer from rod...same as obtained earlier.)
Heat transfer from the first 0.1 m from LHS:
To get this, integrate the convective heat transfer from x = 0 to x =0.1 using for T(x), Eq. A.

cos h[m-[% - xﬂ
_e— 2+ T,
L
o8 h(m—)
2

Q:=hxzD- r (T(x)-T,)dx (eq. (E}...define Q, heat transfer from a length of 0.1 m from LHS)
0

Tx) := (T, -T,)- (eq. (A)...temperature distribution in the rod)

ie. Q=276 W {(heat transfer from a length of 0.1 m from LHS.)
Note: In Eq. E, we have used Newton’s Law of Cooling, i.e. Q = i A AT. Elemental area involved was P.dx = 7.D.dx
and AT = (T, — T,). Also, note that while using Mathead, the calculation of integral within the prescribed limits is
returned directly; there is no need to do the labour of expanding the integral and substituting the limits.
Example 6.6, (a) In Example 6.6, if the two ends of the Tod are maintained at 300°C and 260°C, respectively, determine:
(1) location and value of minimum temperature in the rod
(i) mid-point temperature of the rod
(iii) draw the temperature profile
{iv) net heat transfer to air
{v) heat transferred from the first 0.1 m length of the rod from LHS
(vi) heat transferred from the left end (i.e. at x = 0}
(b) If in this example, if there is an uniform heat generation 4, = 1.5 x 10° W/m® in the rod, determine:
(i) location and value of minimum temperature in the rod
(ii) mid-point temperature of the rod
(iii) draw the temperature profile.
Solution, See Fig. Example 6.6,

D =0.015 m, k = 380 W/(mK)

h = 20 WHm’C)

T, =300°C T,=260°C

FIGURE Example 6.6a Fin wih different temperture ot the two ends

Data:
T, = 260°C ...temperature on RHS
Rest of the data is same as given in Example 6.6.
This is the case of a fin with specified temperatures at its both ends. So, we can use Eq. 6.12 for temperature
distribution and Eq. 6.13 for heat transfer rate.
However, let us work out this problem from fundamentals, and then verify the result from Eqgs. 6.12 and 6.13.
Fin parameter m:

B

-P
We have: m= |—
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This is already worked out to be; 71 = 3.746 m! {fin parameter m)
Now, as shown in section 6.2.1, the controlling differential eguation for this problem is:

ae 2
g7 Tme=0 ) (6.1)
And, for its solution, let us choose Eq. 6.2b:
B(x} = A-cos h(m x) + B-sin h(m-x) ..{6.2b}

Eq. 6.2b gives the temperature profile in the fin, Constants A and B are determined from the boundary conditions:
B.C. (i) atxr=0, 00) = §
BC (i) atx=1L, é(L) = 8,
Then, from B.C. (i) and Eq. 6.2b:
A=6=T-T,
ie. A =260
and, from B.C.(ii) and Eq. 6.2b:
&= (T,-T,)=Acos k{m-L) + B-sin k(m-L)
(T, - T} — A-cos h{m-L)

ie. B:= sinh(nrL) (define constant B)
ie. B = -161.52177 (value of constant B)

Therefore, equation for temperature distribution is:
8(x): = 260-cos h(m-x) — 161.5218 sin ht(m-x} (A)

Location and value of minimum temperature:
Differentiate Eq. A w.r.t. x and equate to zero; solving, we get the location X, of minimum temperature from LHS.
Then, substitute x = x_, in Eq. A to get the value of minimum temperature

Let d6{x)/dx be defined as &’(x}.

&'(x) = d%x—)- = 260-m-sin h(m-x) — 161.5218 m-cos h(m-x) = 0
x

Solving, tan h{m-x) = @ = (1621
260
ie. m-x = a tan h(0.621) = 0.727 (a tan k- means inverse of tan h)
ie. Xmin = 0727 - 2727 =01%m (location of minimum temperature in the rod.)
m 3.746
Now, substitute this value of x,;, in Eq. A to get value of T,
ie. 8(0.194) = 203.742°C  ..palue of @(min}
i.e. Tin = 203.742 + T, ...since &(x) = T(x) - T,
ie. Tinin = 243.742°C (minimum temperature in the rod.)
Temperature at mid-point:
Put ¥=015min Eq. A:
8(0.15) = 206.524 (excess temperakure at mid-point)
Therefore, Tig’ = 206524 + T, °C (since 8(x) = T{x) - T,)
ie. Tig = 246.524°C (temperature at mid-point of rod.)

To draw the temperature profile:

We use Mathcad to draw the temperature profile. First, define a range variable x, varying from 0 to 0.3 m, with an
increment of (.01 m. Then, choose x—y graph from the graph paiette, and fill up the place holders on the x-axis and y-axis
with x and T(x), respectively. Click anywhere ouiside the graph region, and immediately the graph appears. See Fig.
below.

We have:
8(x) := 260-cos k(m-x) ~ 161.5218 sin h(m-x) ..(A)
Therefore, T(x)= &(x) + T, (define T (x), temperature at any poinf in the rod)
x:=0,001.,03 (define a range variable x..starting value = 0,

next value = 0.01 m, and last value = 0.3 m)
Note from the graph that the end temperatures are 300°C and 260°C, and temperature at mid-point is 246.52°C;
also, the minimum temperature occurs at x = 0.194 m, and its value is 243.74°C.
Net heat transfer from the rod:
This is obtained by integrating the convective heat transfer over the entire surface of the rod:
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T{x) for fin-ends at different temperature
300 T \
290

280 N
270 P
260 .
T 250 . ¥ in metres and
e I ey T{x}in deg.C
240
230
220
210 . '

1 |
2005505 01 015 02 025 03

X

F

Q:= J .hoP-ﬂ(x)dx A1l {from Newton's law, Q = hAAT; A = P.dx, and &x) = Tix)-T,)
{v)

ie. Q=61515W ...heat transfer from the rod.
Heat transfer from the first 0.1 m of length of rod:
This is obtained by integrating the convective heat transfer from x = 0 to x = 0.1 m:

.1
Q= rh'P-H(x)dx W (from Newton's law, () = BAAT; A = P.dx, and 8(x) = T(x) - T))
0

ie. Q=22197 W {heat transfer from first 0.1 m of the rod.)
Now, verify from Eqs. 6.12 and 6.13:
We have, for temperature distribution:

8,-sin h(m-(L - x)) + 8, -sin h(m-x)

8(x) = b D) (6.12)
8,:=T,-T, ie. 8 =260
8,=T,-T, ie. & =220
Therefore, #(0.15) = 206.524°C (excess temperature at mid-point)
ie. Toiq := 206524 + T,
ie Toa = 246.524°C (temperature at mid-point...verified.)

And, for heat transfer:

cos h(m-1) - 1} (6.13)

= kA m(8, + By

Qin e m(6 2} [ sinh(m-L)

ie Qpn = 61515 W (heat transfer from the rod..verfied.)
Heat transferred from the left end (i.e. at x = O):

(it is caliculated by applying the Fourier’s law atx = 0.
We already have the equation for temperature distribution, ie.

#(x) = 260-cos h(m-x) — 161.5218 sin h{m-x) - {A)
Qe = — k- A,- [ d?(x)} {applying Fourier's law at the left end)
X
x=0
ie. Qore = -k~ A (0 - 1615218 m- 1) W {since sin h(0) = 0 and cos h{0) = 1)
ie. Qe = 40634 W (heat transferred from left end.)

Check: Let us check this result also by calculating heat transferred from the right end; sum of heat transferred from left
and right ends must be equal to 65515 W, calculated earlier.

Let &'(x} = Ed— a(x) (define the first derivative of 8{x) wr.t. X)
x

Qrgrat= — k- A 8'(0.3) {applying Foutier's law at x = L, ie. x =03 m)

ie. Qeigne = — 20881 W (heat transferred from the right end.)
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D =0.015m, k = 380 WAmK), g, = 1.5 x 10° Wim®

h = 20 Wi{m’C)
T,=40°C

T, = 300°C T, = 260°C

{
X\ ! — dx

Ll

[T

L=03m

|
Lﬂ X
FIGURE Example 6.6(b) Fin with heat generation, two ends at prescribed temperature

Remark: Negative sign indicates that heat transfer is from right to left, i.e. in negative X-direction. Also, note that now,
we have performed the differentiation and put x = 0.3 m, directly in Mathcad, instead of doing it by long hand.
Adding, [ Q! + 1Qugn | = 61515 W (total heat transferred...checks with earlier result.)
{b) If there is uniform heat generation, de (W/m®) in the rod:
See Fig. Example 6.6(b). -

Let us derive the governing differential equation by the usual method of making an energy balance on a differential
element of the rod of length dx at a distance x from the origin, as shown in the Fig. 6.6(b).
We write:
Energy into the element from left face + heat generated in the element =

Energy out at the right face + Energy lost by convection from the surface of the element

ie,
dr aT T
—k-AC-H + oA dy = [—k-AcE—k-A,gﬁT-dx) +h-(P-dx) (T-T,)
. aT
Le —k-AC-F-dx+h-(P-dx)~(T—Ta)—qg-Af-dx= 0
. 4T
ie. ko= ~hP(T-T)+q:4,=0
2
ie. %;1; P (T-T) + ﬁk’i =0 (@)

where, m= h-P
Uk-A[

Substituting® = T - T, we get:

45 _
=0 b}

Pl —mt g+
X

Now, make another subsitution: 8 = §- k—qg—z
-m

Then, Eq. b becomes:

d'e

7 Mg =0 ()
General solution of Eq. ¢ is:

&'(x) = A cos h(m-x) + B-sin h(m x} {d)

A and B constants, determined from Boundary Conditions, i.e.
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BC. ():at x=0, &0) =9,
B.C. (i) and Eq. d gives: 6" = A
BC. (i)atx=L, O() =9,
B.C. (ii} and Eq. d gives:
: &, =6'-cosh(m-L}+ B-sinh(m-L)
B &, — 8,-cos h(m-L)

be sin b L)
Substituting for A and B in Eq. d:
..... d &'{x) = 8, cos h-(m-x) + M-sm h(ri-x)
sin fr(m-L)
ie o) = &, -(cos h{m-x)-sin k(L) - sin h(m-x)-cos k(m:L)) + & sin h{nx)
- sin A(m-L)
(sin him-(L — .
ie. gy = Lrsinhen (sm :221;% sin h(mx) (using eqn. (p) from Table 6.1..(€))
Remembering that: ' = 8- k'?g - and, 8=T-T,
we get: Tx)=T,+ s + 6 (sin (e (L = x)) + 8 sin e x) £}

km® sin i{m-L)
Eq. f gives the desired temperature profile in the rod when there is uniform heat generation in the rod and the ends

are maintained at preseribed temperatures.

Now, for the present case:

g, = 15 x 10° W/m® {(heat generation rate)
o =T, - T, - kqg — e @)= 231875
-

9’2=72—Ta"k‘qx—

2

ie 6 =191875

Therefore, from Eq. £

I, &, -{sin h{m-(L — X))} + & -sin h(m-x)
kom? sin h(m-L)
Minimum temperature in the rod:

Differentiate Fq. f w.r.t. x and equate to zero: solving, get the location of minimum temperature, X, Substitute this
value of x back in Eq. f to get T,

Temp(x) =T, + vl f)...define Temp (x)

Let Temp'{x): = di Temp (x) (define Temp'(x) as the first derivative of Temp(x} w.r.t. x)
n .

" Use solve block to solve Temp'(x) = 0. Start with a trial value of x, write the constraint imrﬁediately below ‘Given’;
then the typing Find (x) immediately gives the value of x.,..

x:=01lm (trial value of x)
Given
Temp'(x} =0
Find(x) = 0.2
ie. Xoin -= 0.2 M (location of minimum temperature in the rod.)
. Substitute this x,,;, back in Eq. f to get T
Temp(X,) = 247.289°C (minimum temperature in the rod, with heat generation.}

Temperature at mid-point:
- At mid-point, x:= 0.15;
Temp(0.15) = 250.447°C {(temperature at mid-point, when there is heat generation in the rod.)
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To draw temperature profile in the rod:

We use Mathcad to draw the temperature profile. First, define a range variable x, varying from 0 to 0.3 m, with an
increment of 0.01 m. Then, choose x-y graph from the graph palette, and fill up the place holders on the x-axis with x
and on y-axis, with T{x), Temp(x), respectively. Click any where outside the graph region, and immediately the graph
appears. It contains two curves, one for x vs. T(x} and the other x vs. Temp(x). See fig. below.

We have:

8(x) == 260-cos h(m-x) - 161.5218 sin h{m-x). (A

Therefore, T(x) = 8(x) + T, (define T(x), tempreature at any point in the rod, without heat generation.)
&, (sin h{m-(L - + &, -sin h(m-

Temp(x) :== T, + ki;z + G {sin h(m (sin :22{) 2 5in () (define Temp(x) with heat generation.)

x:=0,001,..,03 (define a range variable x...starting value = 0,

next value = 0.01 m, and lasf value = 0.3 m)

Temperature distribution for fin,
endsat T,and T,

300

290
280 AN N
270 A

260 AN

T(x) o x in metres and
250 I A e Temperature in deg.C
------- 240

230
220
210
200

0 005 01 015 02 025 03
X

—— without heat generation

----- with heat generation

Note: In the above graph, temperature distribution in the rod is drawn for both the cases i.e. with and without heat
generation, for comparison. Temperature in the rod is everywhere higher with heat generation, as would be expected.
With heat generation, minimum temperature occurs at 0.2 m from LHS, whereas without heat generation, minimum
temperature occurs at 0.194 m from LHS. It can also be seen that left end is at 300°C and the right end at 260°C, as
specified.

6.3 Fins of Non-uniform Cross Section
So far, we considered fins of uniform cross section. But, very often in practice, we find that fins of nenuniform
cross section are also used. See Fig. 6.8, (b), (¢}, and (e). For example, annuiar fins are provided over a circular
tube, as shown in Fig. 6.8{c), to enhance heat transfer. Here, the fin thickness may be constant, but its area for
heat transfer along its radius, i.e. (2 zrt), varies with the radius. .
In such cases, the general differential equation governing the temperature distribution is derived by making
an energy balance across an elemental volume, just as we did in the case of fin of uniform cross section.
Consider a fin of nonuniform cross section as shown in Fig. 6.9.
Consider an elemental section of thickness dx at a distance x from the base as shown. Let us write an energy
balance for this element:
Energy going into the element by conduction = (Energy leaving the element by conduction + Energy leaving
the surface of the element by conwvection}

ie. Qx = Qx +dr T annv (a)
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{a) Straight rectanguiar fin (b) Straight triangular fin (¢) Circular fin of rectangular section

v :

: 1 D )

« . ? y
.
L
(d) Pin fin, circular section (e} Pin fin, conical section

FIGURE 6.8 Typical Fins: (a) and {d] of uniferm crosssection, and {b), [c) and (e): of non-uniform crosssection

where,
(2, = heat conducted into the element at x
Q, . 4 = heat conducted out of the element at x + dx, and
Qeony = heat convected from the surface of the element
to ambient.
We have, from Fourier’s law:

dT
=-kA—
Q.= dx

Note that here, A,, the cross-sectional area varies with x.
And,

Qx +dx T Q + —= de -dx
e Q.. ;11 - kA c:iT k'gd‘{Ac -%Z]'dx FIGURE 6.9 Fin of non-uniform cross-section
x X

Convection heat transfer rate from the elemental volume is given by:
annv = h'dAs'(T - Ta)

where, dA, is the surface area of the elemental volume.
Substituting the terms in Eq. a,

i.{A dT] — E._dAJ.(T_Tﬂ)=0

dx dx ko dx

T 1 dA.) dT 1 Jr dA,
L T-T)=0. (615
N dxz+{A dx]dx (Akdx]( o (615)
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Equation 6.15 is the controlling differential equation for one-dimensional conduction in a fin of non-uniform
cross section. Remember again that both A, and A, vary with x.

Solution of Eq. 6.15 gives the temperature distribution in the fin, and then, by applying Fourier’s law, we can
get the heat flux at any point.

However, solution of Eq. 6.15 is rather complicated and involves Bessel Functions. So, in practice, heat
transfer in fins of non uniform cross sections are calculated by resorting to ‘Fin efficiency’ graphs, as explained in
the next section.

6.4 Performance of Fins

Recollect that purpose of attaching fins over a surface is to increase the heat transfer rate. How well this purpose
is achieved is characterised by two performance parameters:

(i) Fin efficiency, 1y and

(ii) Fin effectiveness, Ef.

6.4.1 Fin Efficiency

Fin transfers heat to the surroundings from its surface, by convection. For convection heat transfer, the driving
force is the temperature difference between the surface and the surrounding. However, temperature drops along
the length of the fin because of the finite thermal conductivity of the fin material; so, heat transfer becomes less
effective towards the end of the fin. Obviously, in the ideal case of the entire fin being at the same temperature as
that of the base wall, the heat transferred from the fin will be maximum. So, fin efficiency is defined as the
amount of heat actually transferred by a given fin to the ideal amount of heat that would be transferred if the
entire fin were at its base temperature, i.e.

7= Liin (6.16)
Qmax
where,
¢, = actual amount of heat transferred from the fin, and
Quax = maximum (or ideal) amount of heat that would be transferred from the fin, if the entire fin
surface were at the temperature of the base.

(a} For an infinitely long fin:
For an infinitely long fin, actual heat transferred is given by Eq. 6.5:

Le. Qbn = JHPkA 8, = JHPkA, (T,-T) (6.5)

To calculate Q,,, if the entire fin surface were to be at a temperature of T,, the convective heat transfer from
the surface would be:

Qurax =h-P-L-(T,-T) {A)
where, P is the perimeter of the fin section and (P.L) is the surface area of the fin.
Dividing Eq. 6.5 by Eq. A:

_JRPkA(T,-T)

T TTRPIAT, - T))

ie = !
2. F= ——=
L2
kA,
ie. 7= ﬁ ((6.17)...fin efficiency for very long fin.)

{b) For a fin with insulated end:
For the case of a fin with an insulated end, we get actual heat transferred Qg from Eq. 6.7:

ie. Qtin = YHPk-A, (T,-T)tan k(m-1) ..(6.7)

and, fin efficiency is given by:
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~ JHPk-A AT, - T, )tan k{m-L)

Ul

h-P-L(T, - T,)
. tan h(m-L)
1e. Tif = T
/ L
kA,
: tan h(m-L '
ie. Ny = tan i(m L) ((6.18)...fin efficiency for a fin with insulated end)

m-L
Note: For the more realistic case of a fin losing heat from its end, as stated earlier, to calculate heat transfer,
Eq.6.9 itself may be used, but , with a corrected length L  in place of L.
It is instructive to represent Eq. 6.18 in graphical form:
Let X=mL
X:=01,02.5 ilet {m-L) vary from (m-L) = 0.1 to 5 with an increment of 0.1}
The graph locks as follows:

Fin efficiency graph-insulated end

1 [ ‘
09 \ |
0.7

tan h(X} 06
X 0.5 —  Note: X=m.L

04 ~~d

0.2
0. 1 |

; T
0 051 15 2 25 3 35 4 45 5
X

It may be noted from the graph that:

* (i) Fin efficiency is maximum for the trivial case of I = 0, i.e. when there is no fin. So, fin efficiency is not
maximised w.r.t. the fin length, but generally, w.r.t. volume or weight of material, which also has cost
implications.

(ii) Nearer to the base of the fin, fin efficiency is high and it goes on decreasing as we move towards the end
of the fin; this is because, the surface temperature of the fin falls as we move away from the base towards
the end. Again , it is clear that there is not much gain if (m-L) is increased beyond a value of about 3.
Table 6.4 gives the values of fin efficiency for a few fin shapes:
Note: In Table 6.4:
I, = modified zero order Bessel function of first kind
K, = modified zero order Bessel function of second kind
I, = modified first order Besse] function of first kind
K, = modified first order Bessel function of second kind.
Fin efficiency graphs:
As can be seen from Table 6.4, expressions for fin efficiency of fins of non-uniform cross sections are rather
complicated and involve Bessel functions. In practice, to find out the heat transfer from such fins, we use "Fin
efficiency charts’. Once the fin efficiency is obtained from these graphs, actual heat transferred from the fin is
calculated using the definition of fin efficiency, ie.

Qf'm
ny= ..(6.16)
7 Quax

where,
Qmax =h-PL (T07 Tﬂ)
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TABLE 6.4 Fin efficiency {7;) for a few fin shapes
A = area of cross section, A, = total fin surface area, L, = corrected length, P = perimeter of fin section, h = heat

transfer coefficient, m = /{h-Pik-A:)}
Sio. | Dedcriphon. Parameters .~ | Fin effdency (n)
Straight fin of
1 rectanguiar section. A= 2w-L, p, = L)
See Fig. 6.8(a) mi,
t
L.=L+—
¢ + 5
m= ﬂ ...thin fins, w >
V Kt
Straight fin of triangular e
2 | ssction. Ar=2ow |1 +(1J 2 P B o)
See Fig. 6.8(b) 2 mL i(2mL)
2-h
m= |—
k-t
Circular fin of
3 rectangular section A= 2.2 (r2 - ) 7= C{[(K1(m'!’1)'f1(m'f2c)—’1("7'1‘1)"(1("1"2:))
See Fig. 6.8(c) i 4 (o m-R YK (1) + Ko (i) hfom- )
25
f. ty + ks C, = m
2 2 2 2 (faac ~ r12)
2:h
m= |—
k.t
Pin fin, circular
4 section A=rDL, _ lan him-L.)
See Fig. 6.8(d) mL,
L.=L+ b
4
me 22
T YkD
Pin fin, conical 2 %
5 section A, D L2+[2) 7= _2 b@mdt)
See Fig. 6.8(e) 2 2 mL f@2mL)
me 57
" YkD
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Fin efficiency for rectangular & triangular fins
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FIGURE 6.10 Efficiency of sraight, rectangulor (or, eflindrical, pin fins) and triangular fins (Ref. Fig.6.8, a & b)

Ouax 15 easily calculated from the given data.

Fig. (6.10) gives fin efficiency values for fins of rectangular and triangular sections.

It may be noted that graph for rectangular fins is also valid for cylindrical, pin fins since equation for fin
efficiency is the same (see Table 6.4); of course, m and L. will be different for pin fins.

For straight, rectangular fins and For straight, triangular fins:
eylindrical, pin fins:
_ tanh{m-L,) 1 h(2mlL)
£ m-L; 7= ml I,(2-m-L}
Let X=m-L Let Z=m-L
, tan h(X) . 1 [(2-2)
ie. ny= —x Le. e= E'—“IO(Z-Z)
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TABLE 6.5 Efficiency vs. mL_ for stroight, rectangu- TABLE 6.6 Efficiency vs. mL for straight, triangular

lor fins, or eylindrical pin fins X = m-L, fins Z=m-L .
Efiey(x) = E0PX) v 0102, .3 - 122 5 6102
y(X) Eficy(2) = W2 2) 01,02 is
x o LGS e ) 1 hRZ)
X R ey Z 1{2:2)]
01 0.997 0.1 0.995
0.2 0.987 02 0.981
0.3 0.571 ) 0958
0.4 0.95 0.4 0.928
05 0.924 05 0.893
0.6 0.895 0% 0.855
0.9 0.796 55 0736
1 0.762 ] 0.698
11 0.728 3 0662
12 0.695 12 0628
13 0.663 1.3 0.597
14 0.632 14 0567
15 0.603 5 054
1.6 0.576 1.6 0515
1.7 0.55 1.7 0492 |
1.8 0.526 18 0.47 T
19 0.503 19 045
2 0.482 2 0432
21 0.462 2.1 0.415
2.2 : 0.444 2.0 0.309
2.3 0.426 2.3 0.384
2.4 0.41 24 0.37
25 0.395 25 0.357
26 0.38 26 0.345
27 0.367 27 0.334
2.8 0.355 28 0.323
29 0.343 29 0.313 -
3 0.332 3 0.304

Note: On x-axis use: (n-L,) for rectangular fins and, (m-L) for triangular fins

Since these two types of fins are used very much in practice, efficiency values are also given in tabular form
above:

Fig. 6.11 gives fin efficiency values for circurnferential fins of rectangular profile.

Note that X-axis in Fig. 6.10 is:

where, A,, is the profile area of the fin.
(A,, = L.t for rectangular section and (L..t/2) for a triangular section).
Rationale of using this complicated expression in the X-axis is as follows:
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FIGURE 6.11 Efficiency of circumferential rectangular fins

Considering a fin of rectangular cross section, insulated at its end, we can write:

tan h(m-L)
LT
Now, oL hP L= h(2.w+ 2:4) L
k-A, kwt

For a very wide fin: i.e. w >> t, we can write:

3
k- 25 } 2
Zhw o jZR 2R 5
kaw-t k-t ktL
3
2h =
ie. m-L= L2 -.(6.19)
KA,

where, A,, = (L.t}, is the profile area for the rectangular section. So, on the X-axis, instead of (m.L), what is plotted

15!
3
iz |-t
KA,

where, L, is the corrected length, to take into account convection from the end.

6.4.2 Fin Effectiveness (<)

Consider a fin of uniform cross-sectional area A,, fixed to a base surface. Purpose of the fin is to enhance the heat
transfer. If the fin were not there, heat would have been transferred from the base area A, by convection. By
attaching the fin, area for convection increases ie. convective resistance { = 1/(h.A)) decreases; however, it is
obvious that a conduction resistance due to the solid fin is now introduced and the total heat transfer would
depend upon the net thermal resistance. As we go on increasing the length of fin, convection resistance will go
on decreasing, but conduction resistance will go on increasing. This means that attaching a fin may not
necessarily result in effectively increasing the heat transfer. Therefore, how effective the fin is in enhancing the
heat transfer is characterised by a parameter called fin effectiveness.
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